Nivolumab plus ipilimumab does not show anti-tumor activity in this cohort of patients with microsatellite stable, hTMB colorectal cancer. Other treatment options should be considered for these patients, including treatments offered in clinical trials.

Results:
- 12 pts enrolled February 2018 to May 2020. 2 pts were not evaluable and excluded from efficacy analysis. Of the 10 evaluable pts, 1 pt had only a baseline visit followed by an SAE due to clinical progression and was not included in Fig 1. TMB ranged from 9-233 Mut/Mb (median 13); for 1 pt Mut/Mb were not specified. Tumor microsatellite (MS) status was stable for 11 pts; indeterminate for 1 pt. PD-L1 status was not tested for 8 pts and negative for 4 pts.
- Demographics: Median age 58 y (range 43, 69); 75% male. Clinical characteristics: 33% PS 0, 67% PS 1; 83% received ≥3 prior systemic regimens; 17% received 2 prior regimens.
- Outcomes: 1 PR (10%) and 0 pts SD>16 (Table 1 and Figure 1). OS and PFS are shown in Table 1 and Figure 2.
- Safety: 4 pts (33%) had ≥1 SAE or Grade 3-4 AE at least possibly related to N+I, including myasthenia gravis, diarrhea, glucose intolerance, hyperglycemia, and small intestinal obstruction.

Table 1: Efficacy Outcomes (N=10)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Rate (%) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC rate</td>
<td>10 (0, 45)</td>
</tr>
<tr>
<td>OR rate</td>
<td>10 (0, 45)</td>
</tr>
<tr>
<td>Median PFS</td>
<td>8.9 (5.1, 16.1)</td>
</tr>
<tr>
<td>Median OS</td>
<td>42.9 (13.0, 57.4)</td>
</tr>
</tbody>
</table>

Funding supported by Bristol Myers Squibb (BMS). The authors would like to acknowledge the patients who participated in this cohort, as well as the clinical centers and staff.

Contact: TAPURPublications@asco.org

Abstract 107: Nivolumab + Ipilimumab in patients with colorectal cancer with high tumor mutational burden (hTMB): Results from the Targeted Agent and Profiling Utilization Registry (TAPUR) Study

Gina M. Vaccaro1, Michael Rothe2, Pam K. Mangat2, Elizabeth Garrett-Mayer2, Jimmy J. Hwang3, Olatunji B. Alese4, Maged F. Khalil5, Muhammad Khurram Hameed6, Herbert Leon Duvivier7, Timothy Lewis Cannon8, Raegan O’Lone2, Gina N. Grantham2, Susan Halabi9, Richard L. Schilsky2;

1Providence Cancer Institute, Portland, OR; 2American Society of Clinical Oncology, Alexandria, VA; 3Levine Cancer Institute, Atrium Health, Charlotte, NC; 4Winship Cancer Institute of Emory University, Atlanta, GA; 5Lehigh Valley Cancer Institute, Allentown, PA; 6Ascension Borgess Cancer Center, Kalamazoo, MI; 7Cancer Treatment Centers of America Atlanta, Newnan, GA; 8Inova Schar Cancer Institute, Fairfax, VA; 9Duke University Medical Center, Durham, NC

Nivolumab plus ipilimumab does not show anti-tumor activity in this cohort of patients with microsatellite stable, hTMB colorectal cancer. Other treatment options should be considered for these patients, including treatments offered in clinical trials.

Background:
- TAPUR is a phase II basket study that evaluates anti-tumor activity of commercially available targeted agents in patients (pts) with advanced cancers with specific genomic alterations.
- Results of a cohort of pts with colorectal cancer (CRC) with high tumor mutational burden (hTMB), defined as ≥9 mutations/Megabase (Mut/Mb), treated with nivolumab plus ipilimumab (N+I) are reported.

Methods:
- **Study Design:**
 - Eligible pts: Advanced CRC, no standard treatment (tx) options, ECOG PS 0-2, adequate organ function, measurable disease. Tx assigned according to pre-specified matching rules based on genomic tests selected by sites.
 - Pts received N at 1 mg/kg IV every 3 weeks for 4 doses in combination with 1 at 3 mg/kg every 3 weeks for 4 doses. N was then continued at 240 mg every 2 weeks or 480 mg every 4 weeks until disease progression.
 - Primary endpoint: Disease control (DC) defined as objective response (OR) or stable disease (SD) at 16+ wks per RECIST v1.1. Secondary endpoints: Progression-free survival (PFS), overall survival (OS), and toxicity per CTCAE. Grade 3-5 adverse events (AEs) or serious adverse events (SAEs) at least possibly related to N+I are reported.

Results:
- 12 pts enrolled February 2018 to May 2020. 2 pts were not evaluable and excluded from efficacy analysis. Of the 10 evaluable pts, 1 pt had only a baseline visit followed by an SAE due to clinical progression and was not included in Fig 1. TMB ranged from 9-233 Mut/Mb (median 13); for 1 pt Mut/Mb were not specified. Tumor microsatellite (MS) status was stable for 11 pts; indeterminate for 1 pt. PD-L1 status was not tested for 8 pts and negative for 4 pts.
- Demographics: Median age 58 y (range 43, 69); 75% male. Clinical characteristics: 33% PS 0, 67% PS 1; 83% received ≥3 prior systemic regimens; 17% received 2 prior regimens.
- Outcomes: 1 PR (10%) and 0 pts SD>16 (Table 1 and Figure 1). OS and PFS are shown in Table 1 and Figure 2.
- Safety: 4 pts (33%) had ≥1 SAE or Grade 3-4 AE at least possibly related to N+I, including myasthenia gravis, diarrhea, glucose intolerance, hyperglycemia, and small intestinal obstruction.

Funding supported by Bristol Myers Squibb (BMS). The authors would like to acknowledge the patients who participated in this cohort, as well as the clinical centers and staff.

Contact: TAPURPublications@asco.org